Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine.
نویسندگان
چکیده
Alloying Ni with Ir leads to the formation of highly active catalysts for complete decomposition of hydrous hydrazine with 100% H(2) selectivity at room temperature. Use of surfactants enhances the activity by suppressing the agglomeration of nanoparticles, but does not affect the bimetallic compositions of the nanoparticles.
منابع مشابه
Effect of Silica Content on Support-Iridium Active Phase Interactions on the Nanocatalyst Activity
To discuss the potential role of the support for iridium catalyst, we have proceeded to prepare a series of supported catalysts with the same active phase content, but different silica content, to elucidate the changes in surface structure and the reaction process of hydrous hydrazine decomposition on catalyst. The obtained iridium catalysts contained 20 wt% of nanoparticles dispersed on spheri...
متن کاملRoom-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage.
Rhodium nanoparticles (NPs) effectively catalyze the decomposition of hydrous hydrazine to produce hydrogen under ambient reaction conditions. Rh(0) NPs with a particle size of approximately 5 nm prepared in the presence of hexadecyltrimethyl ammonium bromide show higher catalytic activity.
متن کاملSynthesis and application of mesoporous gamma alumina granules as iridium catalyst support
Mesoporous gamma-alumina granules, which are known as a common catalyst support in industrial applications were synthesized via the sol gel-oil drop method having a diameter of 1-2 mm. The effect of calcination temperature (450 and 750 °C) on the properties of gamma alumina granules were studied and the functionality of 20 wt% iridium catalyst on the alumina granules for hydrazine decomposition...
متن کاملTemplated synthesis of nickel nanoparticles: Toward heterostructured nanocomposites for efficient hydrogen storage
The world is currently facing an energy and environmental crisis for which new technologies are needed. Development of cost-competitive materials for catalysis and hydrogen storage on-board motor vehicles is crucial to lead subsequent generations into a more sustainable and energy independent future. This thesis presents work toward the scalable synthesis of bimetallic heterostructures that can...
متن کاملCatalytic Decomposition of H2O2 on MnFe2O4 Nanocomposites Synthesized by Various Methods in the Presence of Silicate and Zeolite Supports
In this research iron manganese oxide nanocomposites were prepared by co-precipitation, sol-gel and mechanochemical methods by using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared in the presence of various catalyst beds. The polyvinyl pyrrolidon (PVP) was used as a capping agent to control the agglomeration of the nano...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 46 35 شماره
صفحات -
تاریخ انتشار 2010